More Website Templates @ TemplateMonster.com - February 24, 2014!

Światłowody

Straty w światłowodzie

     Wszystkie światłowody nawet jednomodowe nie są idealnym medium transmisyjnym. Jedną z podstawowych wad jest tłumienie sygnału. Spowodowane jest przez straty falowe wynikające z niedoskonałości falowodu. Ponad to w rzeczywistym światłowodzie występuje: absorpcja (pochłanianie energii przez cząstki światłowodu), rozpraszanie energii spowodowane zarówno przez fluktuacje gęstości materiału rdzenia jak i fluktuacjami współczynnika załamania, a także wadami produkcyjnymi (zgięcia, mikropęknięcia).

Tłumienie ma różne źródła:

  • Straty materiałowe - większość światłowodów wykonana jest ze szkła kwarcowego SiO2. Światło ulega rozproszeniu z powodu fluktuacji gęstości materiału rdzenia, a ta spowodowana jest niedoskonałością struktury szkła. Dla czystego szkła kwarcowego stała materiałowa k = 0,8, a tłumienność spowodowana rozproszeniem Rayleigh'a wynosi dla długości fali widzianej przez światłowód l=850 nm 1.53 dB/km, dla l=1300 nm 0.28 dB/km, a dla l=1550 nm 0.138 dB/km. Oprócz rozpraszania Rayleigh'a istnieje silna absorpcja zarówno w podczerwieni, jak i nadfiolecie związana bezpośrednio z samymi własnościami szkła krzemowego SiO2. Nie pozwala ona na wykorzystanie jeszcze dłuższych fal do transmisji.
  • Straty falowodowe - wynikają z niejednorodności światłowodu powodowanymi fluktuacjami średnicy rdzenia, zgięciami włókna, nierównomiernością rozkładu współczynnika załamania w rdzeniu i w płaszczu, oraz wszelkimi innymi odstępstwami od geometrii idealnego światłowodu cylindrycznego. Deformacje włókna mające duży wpływ na tłumienie światłowodu to mikrozgięcia i makrozgięcia.
          Mikrozgięcia powstają w procesie wytwarzania włókien i są to nieregularności kształtu rdzenia i płaszcza rozłożone wzdłuż włókna losowo lub okresowo. Wywołują w światłowodzie wielomodowym mieszanie się modów i ich konwersję w mody wyciekające do płaszcza. W światłowodzie jednomodowym mikrozgięcia powodują natomiast rozmycie modu.
          Tłumienie wywołane makrozgięciami, czyli wywołane fizycznym zakrzywieniem włókna światłowodowego, jest pomijalnie małe dla promieni zakrzywień większych od kilku centymetrów. Mniejsze powodują zmianę współczynnika załamania w obszarze zgięcia, co także prowadzi do tworzenia się modów wyciekających i uwidacznia się efektem świecenia włókna na powierzchni.
  • Straty mocy sygnału powodowane są również przez przesunięcia, rozsunięcia oraz wzajemny obrót światłowodów.
  • Absorpcja w zakresie pasm użytecznych (0,8 - 1,5 µm) jest niewielka, wzrasta natomiast przy niewielkiej nawet koncentracji zanieczyszczeń metali Fe, Cu, Cr, a zwłaszcza jonów OH. Jest to proces nieodwracalny, wynikowa tłumienność zależy od rodzaju domieszek oraz od sposobu ich koncentracji. Ponadto powyższe zanieczyszczenia powodują selektywny wzrost tłumienia, wybór okien transmisyjnych wynika z konieczności pominięcia tych pasm absorpcyjnych.

     Dyspersja jest to zjawisko poszerzenia (rozmycia) impulsu. Powodowana jest przez to, że światło przy określonej długości fali ma odpowiednią szerokość widma. Im szersze widmo tym więcej promieni przemieszcza się w rdzeniu. Promienie te przebywają różną drogę, przez co czas przebycia promienia przez włókno jest różny. W rezultacie na wyjściu pojawia się szerszy impuls, który rośnie wraz ze wzrostem długości światłowodu. Przepływność transmisyjna włókna jest więc określona przez to, jak blisko siebie można transmitować kolejne impulsy bez ich wzajemnego nakładania się na siebie (przy zbyt bliskich impulsach nie ma sposobu ich rozpoznania). Dyspersja ogranicza długość światłowodu przez który może być transmitowany sygnał. Rozróżnia się dwa typy dyspersji. Dyspersję międzymodową występującą w światłowodach wielomodowych, oraz dyspersję chromatyczną występującą w włóknach jednomodowych.

  • Dyspersja modowa - występuje w światłowodach wielomodowych. Impuls światła wiedziony przez światłowód jest superpozycją wielu modów, z których prawie każdy, na skutek różnych kątów odbicia od granicy rdzenia, ma do przebycia inną długość drogi między odbiornikiem a nadajnikiem. Dyspersja modowa światłowodów skokowych przekracza znacznie wszystkie pozostałe dyspersje. Dodatkowo z powodu dużego tłumienia jednostkowego tych włókien docierający sygnał ma wyraźnie inny kształt i mniniejszą amplitudę. Zniekształcenie to rośnie wraz z długością światłowodu. Ograniczenie dyspersji modowej i zwiększenie pasma światłowodów wielomodowych do 1200 MHz*km uzyskano wprowadzając włókna gradientowe.
  • Dyspersja chromatyczna - z racji tego, że światłowody jednomodowe propagują tylko jeden mód, nie występuje tutaj zjawisko dyspersji międzymodowej. Uwidacznia się natomiast inny, dotychczas niewidoczny rodzaj dyspersji, dyspersja chromatyczna. Składają się na nią dwa zjawiska: dyspersja materiałowa i falowodowa.

      Dyspersja materiałowa powodowana jest zmianą współczynnika załamania szkła kwarcowego w funkcji długości fali. Ponieważ nie istnieje źródło światła ściśle monochromatyczne, gdyż każdy impuls światła składa się z grupy rozproszonych częstotliwości optycznych rozchodzących się z różną prędkością, docierający po przebyciu fragmentu włókna mód charakteryzuje się rozmyciem w czasowym.
      Dyspersja falowa częściowo powodowana jest wędrowaniem wiązki przez płaszcz światłowodu. Szybkość rozchodzenia się zależy od właściwości materiałowych płaszcza.
      Wykorzystanie w systemach światłowodowych większych długości fali przede wszystkim ok. 1300 nm, zamiast 830÷900 nm wykorzystywanych w pierwszych systemach, przynosi poważne korzyści jeśli chodzi o dyspersję, gdyż dyspersja materiałowa w tym obszarze długości fali jest praktycznie równa zeru. Co więcej, w miarę doskonalenia procesu produkcji włókna, zaczęło się okazywać, że dla bardzo suchych (o małej zawartości jonów OH) rodzajów szkła, można uzyskać dla fali 1300 nm wartości tłumienności znacznie poniżej 3÷5 dB/km, jakie uzyskiwano dla 850 nm i z wielu źródeł pojawiły się doniesienia o uzyskaniu dla fali 1300 nm wartości tłumienności rzędu od 1 do 0,5 dB/km. Później uzyskano dla fali 1550 nm tłumienność rzędu 0,2 dB/km.
Więcej